
Tom Peterka	

tpeterka@mcs.anl.gov	

http://www.mcs.anl.gov/~tpeterka	

Mathematics and Computer Science Division	

Reducing the Cost of Data Movement in Exascale Analytics	

Kitware Seminar	

March 24, 2016	

“Data movement, rather than computational processing, will be the
constrained resource at exascale.” – Dongarra et al. 2011.	

Examples	

2	

Streamlines and pathlines
in nuclear engineering

Stream surfaces	

in meteorology

FTLE	

in climate modeling

Morse-Smale complex	

in combustion

Voronoi and Delaunay tessellation	

in cosmology

Ptychography	

in materials science

	

	

Exascale Data Analytics Software Stack	

User Libraries and Tools	

System Services	

DIY	

(block parallelism)	

	

Analysis libraries, standard visualization/analysis packages	

Storage systems, resource managers, schedulers	

Data movement building
blocks within one component
(DIY) and between
components (Decaf) 	

Decaf	

(decoupled dataflows)	

	

Applications	

Exascale simulations, experiments, observations, ensembles	

System Libraries	

Programming model and runtime	

	

	

DIY	

4	

Analysis Algorithm
Stochastic Linear Algebra

Iterative Nearest Neighbor

OS / Runtime

Application

Data Movement

Analysis Algorithm

Application

OS / Runtime

Master

Block execution

Block loading

Assigner

Mapping blocks
to

processes

Decomposer

Comm. links

Decomposition

Communication

Global reduction

Local neighbor

I/O

Independent

Collective

Algorithms

K-d tree

Parallel sort

Tom Peterka, ANL	

Dmitriy Morozov, LBNL	

github.com/diatomic/diy2	

	

DIY is a programming model and runtime for HPC block-parallel analytics.	

•  Block parallelism	

•  Flexible domain decomposition and assignment to resources	

•  Efficient reusable communication patterns	

•  Automatic dual in- and out-of-core execution	

•  Automatic block threading	

Block Parallelism	

5	

Blocks are units of work and communication; blocks exchange information with
each other using DIY’s communication algorithms. DIY manages block placement
in MPI processes and memory/storage. This allows for flexible, high performance
programs that are easy to write and debug.	

8 processes 4 processes 1 process

// initialization	

Master master(world, num_threads, mem_blocks, ...); 	

ContiguousAssigner assigner(world.size(), tot_blocks); 	

decompose(dim, world.rank(), domain, assigner, master);	

	

// compute, neighbor exchange	

master.foreach(&foo);	

master.exchange();	

	

// reduction	

RegularSwapPartners(dim, tot_blocks, k); 	

reduce(master, assigner, partners, &foo);	

	

// callback function for each block	

void foo(void* b, const Proxy& cp, void* aux) 	

{	

 for (size_t i = 0; i < in.size(); i++) 	

 cp.dequeue(cp.link()->target(i), incoming_data); 	

 // do work on incoming data	

 for (size_t i = 0; i < out.size(); i++) 	

 cp.enqueue(cp.link()->target(i), outgoing_data[i]);	

}	

Example Usage	

6	

Decaf: Data Movement Between Components	

7	

Decoupling by converting a single link into a dataflow enables new
features such as fault tolerance and improved performance. 	

Decaf	

8	

Decaf Dataflow Definition

Transport Layer

Workflow Definition

Swift

Flow
control

Nessie Mercury MPI

Python

Data
model

Data
distribution

Resilience

Decaf Runtime

XML

Tom Peterka,	

Franck Cappello, ANL	

Jay Lofstead, SNL	

bitbucket.org/tpeterka1/decaf	

	

Decaf is a programming model and runtime for coupling HPC codes.	

•  Decoupled workflow links with configurable dataflow	

•  Data redistribution patterns	

•  Flow control	

•  Resilience	

Performance Matters	

9	

Particle Tracing in Nuclear Engineering, Mixing, Combustion	

10	

Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier results.	

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. IPDPS ’11.

With Paul Fischer, Aleks Obabko (ANL), Daniel Livescu, Mark
Peterson (LANL), Jackie Chen, Ray Grout (SNL)

 [github.com/GRAVITYLab/OSUFlow]	

Peterka et al., High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation. SC14.

Computational Geometry in Cosmology and Molecular
Dynamics	

11	

Strong and weak scaling for up to
20483 synthetic particles and up to
128K processes (excluding I/O)
shows up to 90% strong scaling and
up to 98% weak scaling.	

With Dmitriy Morozov, Carolyn Phillips, Salman Habib, Katrin Heitmann [github.com/diatomic/tess2]	

Load Balancing in Cosmology	

12	

Cosmology simulations have severe load imbalance. Tessellating meshes using a k-d
tree instead of regular grid results in dramatically improved performance.	

 [github.com/diatomic/tess2]	

Courtesy Dmitriy Morozov with Zarija Lukic

Morozov and Peterka, Efficient Delaunay Tessellation Through K-D Tree Decomposition, in preparation.

 Above: Strong scaling of estimating the density of 5123
synthetic particles onto grids of various sizes.	

Left: comparison of tessellation-based and CIC density	

13	

Tessellation-based density estimation is
parameter free, shape free, and
automatically adaptive	

Density Estimation in Cosmology	

With Hadrien Croubois, Nan Li, Steve Rangel, Franck Cappello

Peterka et al., Self-Adaptive Density Estimation, SIAM SISC 2016.

 [github.com/diatomic/tess2]	

Codesign in Nuclear Engineering	

14	

Coupling proxy app to transfer a solution from a 10243 tetrahedral mesh to a 10243
hexahedral mesh and back again at up to ½ million blocks (MPI processes) and 43% strong
scaling efficiency.	

With Vijay Mahadevan, Iulian Grindeanu, Tim Tautges, Andrew Siegel

The cian proxy app of the CESAR codesign center emulate multiphysics
coupling between neutronics and thermal hydraulics in nuclear reactor design.	

 [github.com/tpeterka/cian2]	

Ptychographic
Reconstruction at the APS	

15	

A test pattern, with 30 nm feature
size, was raster scanned using a
5.2 keV X-ray beam. The total
scanning time was about 20
minutes. Reconstruction time was
~2 minutes.	

Nashed et al., Parallel Ptychographic Reconstruction. Optics Express 2014.

Courtesy Youssef Nashed, with David
Vine, Chris Jacobsen (APS)

 [ptycholib (available on request)]	

Image Segmentation at the ALS	

16	

Researchers at LBL developed tools
for segmentation and connectivity
analysis of granular and porous
media using DIY2.	

	

Left: 3D image of a granular material
(flexible sandstone) acquired at ALS by
Michael Manga and Dula Parkinson.
(Data: 2560 × 2560 × 1276). Right:
Watershed segmentation of the
material identifies individual grains (run
on Edison @ NERSC) [courtesy
Morozov, O’Neil (LBL)].	

Courtesy Dmitriy Morozov and Patrick O’Neil with Michael Manga, Dula Parkinson (ALS)

Morozov and Peterka, Block-Parallel Data Analysis with DIY2. Submitted to SPAA 2016.

 [bitbucket.org/mrzv/gaia]	

Data Redistribution in Molecular Dynamics	

17	

We applied the decaf redistribution library to the Gromacs molecular dynamics code in
order to visualize isosurfaces from molecular density. Code complexity was reduced
dramatically, while maintaining performance improved.	

 [bitbucket.org/tpeterka1/decaf]	

Courtesy Matthieu Dreher

Dorier et al., Lessons Learned from Building In Situ Coupling Frameworks. ISAV 2015.

Three different redistributions are performed
while computing an isosurface from an MD
simulation of 54,000 lipids(2.1M particles).
[Dreher et al. 2014]	

Looking Ahead���
	

18	

DIY Integration with VTK and
Friends	

19	

•  VTK	

	

	

•  Paraview	

•  At Kitware: In 2015, Kitware tested DIY’s kd-tree algorithm in Paraview;

production release slated for ParaView 5. in 2016 w/ DIY a 3rd party
library. Parallel resample filter w/ DIY now also in ParaView.	

•  VisIt	

•  At ANL: Summer student 2016 to rewrite VisIt volume renderer with
DIY.	

•  VTK-m	

•  Integration in ECP	

Sewell et al., The SDAV Software Frameworks for Visualization and Analysis on Next-Generation
Multi-Core and Many-Core Architectures, UltraVis ’12.

	

•  At ANL and Kitware: DIY now a 3rd

party library in VTK build, used for
parallel resample filter (for LANL
ASC milestone)	

Thermal hydraulics vector data from
Nek5000 with parallel particle tracing
using DIY1/OSUFlow rendered in VTK.	

[Courtesy Zhanping Liu]

DIY R&D: Exascale Architectures	

20	

Dynamic block execution/communication patterns	

1. Synchronization: Relax BSP synchronization, e.g., for iterative algorithms, to
overlap communication with computation.	

2. Load balance: Support work stealing and other dynamic load balancing
algorithms.	

	

Memory/storage hierarchy	

3. Deep hierarchy: Supporting more than 2 levels of hierarchy and scheduling
block movement, including prefetching, in nearby levels.	

4. Resilience: Support fault tolerance with out of core block movement.	

	

DIY R&D: Exascale Applications	

21	

Apply new decompositions	

1. Astrophysics: Add support for AMR (block-based and patch-based).	

2. Climate: Use existing simulation decompositions (eg., geodesic grid).	

	

Adaptive algorithms	

3. Combustion: Select and vary communication pattern parameters
automatically (eg., # blocks in memory).	

4. Reactors: Include work stealing algorithms to load-balance unstructured
time-varying graph / mesh partitions.	

5. Cosmology: Incrementally adapt time-varying decomposition (eg., adapt k-d
tree on the fly instead of rebuilding)	

Decaf R&D & Integration	

22	

Allow cycles in workflow graphs	

Develop buffering component	

Deploy multiple executables	

Develop more use cases	

Integrate with other workflow tools	

1. Swift	

2. ADIOS	

3. Catalyst?	

References	

23	

DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri,
A.: Scalable Parallel Building Blocks for Custom Data Analysis. LDAV 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. IMUDI 2012.	

•  Sewell, C., Meredith, J., Moreland, K., Peterka, T., DeMarle, D., Lo, Li-ta, Ahrens, J., Maynard,
R., Geveci, B.: The SDAV Software Frameworks for Visualization and Analysis on Next-
Generation Multi-Core and Many-Core Architectures. UltraVis 2012.	

•  Morozov, D., Peterka, T.: Block-Parallel Data Analysis with DIY2. In preparation, 2016.	

https://github.com/diatomic/diy2	

Decaf	

•  Wozniak, J., Peterka, T., Armstrong, T., Dinan, J., Lusk, E., Wilde, M., Foster, I.: Dataflow
Coordination of Data-Parallel Tasks via MPI 3.0. EuroMPI, 2013.	

•  Dorier, M., Dreher, M., Peterka, T., Wozniak, J., Antoniu, G., Raffin, B.: Lessons Learned from
Building In Situ Coupling Frameworks. Proceedings of ISAV 2015.	

•  Peterka, T., Croubois, H., Li, N., Rangel, E., Cappello, F.: Self-Adaptive Density Estimation of
Particle Data. To appear SIAM SISC 2016.	

https://bitbucket.org/tpeterka1/decaf	

	

24	

DIY applications	

	

	

•  Peterka, T., Morozov, D., Phillips, C.: High-Performance Computation of Distributed-
Memory Parallel 3D Voronoi and Delaunay Tessellation. SC14.	

•  Lu, K., Shen, H.-W., Peterka, T.: Scalable Computation of Stream Surfaces on Large Scale
Vector Fields. SC14.	

•  Chaudhuri, A., Lee-T.-Y., Shen, H.-W., Peterka, T.: Efficient Indexing and Querying of
Distributions for Visualizing Large-scale Data. Proceedings of IEEE PacificVis 2014.	

•  Nashed, Y., Vine, D., Peterka, T., Deng, J., Ross, R., Jacobsen, C.: Parallel Ptychographic
Reconstruction. Optics Express 2014.	

•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale
Complexes. IPDPS 2012.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and
FTLE Computation for Time-Varying Flow Fields. SC12. 	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.:
Scalable Computation of Distributions from Large Scale Data Sets. LDAV 2012.	

•  Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study
of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. IPDPS 2011. 	

•  Peterka, T., Kendall, W., Goodell, D., Nouanesengsy, B., Shen, H.-W., Huang, J., Moreland, K.,
Thakur, R., Ross, R.: Performance of Communication Patterns for Extreme-Scale Analysis and
Visualization. SciDAC 2010.	

Tom Peterka	

tpeterka@mcs.anl.gov	

http://www.mcs.anl.gov/~tpeterka	

Mathematics and Computer Science Division	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

National Energy Research Scientific Computing Center (NERSC)	

	

Funding	

DOE SDMAV Exascale Initiative	

DOE SciDAC SDAV Institute	

	

People	

DIY: Dmitriy Morozov (LBNL)	

Decaf: Franck Cappello (ANL), Jay Lofstead (SNL)	

Acknowledgments

https://github.com/diatomic/diy2	

https://bitbucket.org/tpeterka1/decaf	

	

	

